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Abstract. In this paper a successive optimization method for solving inequality constrained
optimization problems is introduced via a parametric monotone composition reformulation. The
global optimal value of the original constrained optimization problem is shown to be the least root
of the optimal value function of an auxiliary parametric optimization problem, thus can be found
via a bisection method. The parametric optimization subproblem is formulated in such a way that
it is a one-parameter problem and its value function is a monotone composition function with
respect to the original objective function and the constraints. Various forms can be taken in the
parametric optimization problem in accordance with a special structure of the original optimization
problem, and in some cases, the parametric optimization problems are convex composite ones.
Finally, the parametric monotone composite reformulation is applied to study local optimality.
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1. Introduction

Successful applications of optimization [1, 3, 5, 16, 17] can be found in various
areas, such as finance, engineering and operations research. During the last two
decades, the study of global optimization has attracted a lot of attention from
optimization researchers. Solution methods for various nonconvex or discrete
optimization problems have been developed, see [6, 12, 13, 18]. In particular,
convexification methods in nonconvex optimization are of considerable interest to
optimization researchers, as there is no standard algorithm for nonconvex optimi-
zation problems. Various convexification methods have been studied in [1, 11].
Exponential transformation and pth power transformation are two commonly used
convexification techniques.

Consider the following optimization problem P

* This research was partially supported by the Australian Research Council and the Research
Grants Council of Hong Kong (grant no. CUHK 358/96P).
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inf f (x)0

subject to f (x) < 0 j 5 1, . . . , m ,j

x [ X ,
n nwhere X is a subset of R , f : R → R (i 5 0, 1, . . . , m) are real-valued functions.i

If the perturbation function for P is not convex, the primal-dual methods [16] may
fail to solve the problem P. Recently, a pth power transformation was developed in
[14] to convexify the perturbation function and thus to achieve a property of zero
duality gap for a class of nonconvex optimization problems. In [19, 22], a nonlinear
Lagrangian dual formulation with a minimax or pth power structure for nonconvex
continuous or discrete inequality constrained optimization problems is introduced
and zero duality gap is shown to exist under very mild condition. In particular, by
virtue of the perturbation function exact penalty results via nonlinear penalty
functions are provided in [19] with smaller penalty parameters than the ones that are
required by the classical penalty functions. It is worth noting that these zero duality
results are motivated by a recent sufficient and necessary condition for a nonconvex
optimization problem obtained in [7]. It is also worth noting that in [4] a problem of
minimizing a concave quadratic function subject to finitely many convex quadratic
constraints is reconstructed as an equivalent minimax convex problem.

The aim of this paper is to show that finding the global optimal value of
constrained inequality optimization problems is equivalent to the problem of finding
the least root of a nonnegative monotone decreasing function. The least root
problem can be solved via, e.g., a bisection method and, however, the value of the
nonnegative monotone decreasing function involves a global optimization problem.
More precisely, a class of parametric monotone composition formulations for
(nonconvex) optimization problems is introduced. The motivation is to refine the
sufficient and necessary condition for solving inequality constrained optimization
problems in [7].

It is worth noting that the local search scheme may be needed in some global
optimization method (see [20]). Thus, the transformed problem in [7] with a
minimax structure may have some disadvantages when the local search is applied.
The parametric optimization problem to be introduced in this paper is formulated in
such a way that it is a one-parameter problem and its value function is a monotone
composition function with respect to the original objective function and the
constraints. Various monotone composition forms can be taken in the parametric
optimization problem formulation. In particular, two elementary transformation
functions (exponential and pth power) used in [11] are examples of outer functions
for monotone composition problems. The proposed method is a two-level scheme.
In the lower level of each iteration, an auxiliary parametric optimization problem
with simple constraints or without constraint is solved, while in the upper level the
parameter is adjusted, via a bisection method, such that the least root of the optimal
value function of the parametric optimization problem is found.

The outline of the paper is as follows. In Section 2, a parametric monotone
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composition approach for solving inequality constrained optimization problems is
introduced. In Section 3, the inequality constrained global optimization problem is
shown to be equivalent to the least root problem of the optimal value function of an
auxiliary parametric optimization problem. A two-level solution scheme is proposed.
In Section 4, an algorithm is designed using the proposed two-level solution scheme
and an example is given to illustrate the proposed solution scheme. Finally, local
optimality via the parametric monotone composition approach is discussed in
Section 5.

2. Unconstrained Monotone Composition Formulation

Consider the following optimization problem P that could be nonconvex

inf f (x)0

subject to f (x) < 0 j 5 1, . . . , m ,j

x [ X ,

n nwhere X is a subset of R , f : R → R (i 5 0, 1, . . . , m) are real-valued functions.i

The feasible set of P is

X 5 hx [ X: f (x) < 0, i 5 1, . . . , mj .0 i

Our study in this paper is restricted to the class of optimization problems P that
satisfy the following assumptions.
(A1) f is uniformly continuous, and each f is continuous on an open set containing0 i

X, i 5 1, . . . , m;
(A2) inf f (x) . 0;x[X 0

(A3) X is connected.
Uniform continuity of f in Assumption (A1) is an essential assumption in our0

approach, although it is a very general assumption made in optimization problems.
Assumption (A2) states that f is bounded from below on X. The connectedness of X0

in Assumption (A3) will be used in the proof of Lemma 3.2.

11mDEFINITION 2.1. Let the function f : R → R satisfy the following properties,
for y 5 ( y , y , . . . , y ):0 1 m

11m(A) f( y) > max y , ;y [ R ;0<i<m i
m(B) f( y) 5 maxh0, y j, ;y [ R, ( y , . . . , y ) [ R ;0 0 1 m 2

(C) f is a nondecreasing function with respect to its first component y .0

It is clear from (B) that f(0, 0, . . . , 0) 5 maxh0, 0j 5 0.
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EXAMPLE 2.1. The following functions satisfy properties (A), (B) and (C):

f ( y) 5 maxh0, y , y , . . . , y j ;` 0 1 m

m 1
]p pf ( y) 5 O [maxh0, y j] , 0 , p , 1` ;S Dp i

i50

m 1
]p pf9( y) 5 maxh0, y j 1 O [maxh0, q ( y )j] , 0 , p , 1` ,S Dp 0 i i

i51

where q : R → R can be any continuous function that satisfies q (z) < 0, if z , 0 andi i

q (z) > z, if z > 0. For example, q (z) 5 exp(z) 2 1. hi i

Let

f (x)0]]F(x, u ) 5 2 1, f (x), . . . , f (x) , x [ X, u . 0 .S D0 1 mu0

DEFINITION 2.2. Let f be a function that satisfies properties (A), (B) and (C) in
nDefinition 2.1 and u . 0. Define an auxiliary function F : R 3 R → R as0

F(x, u ) 5 f(F(x, u )) .0 0

An auxiliary problem P (u ) is defined as followsf 0

inf F(x, u ) .0
x[X

Constraint x [ X often represents simple constraints such as constraints for lower
and upper bounds. We expect the constraint structure in P (u ) to be much simplerf 0

than the constraint structure in P in general situations. This form of the auxiliary
parametric optimization problem can be considered as a monotone composition
formulation since f is a monotone function with respect to its first component.

nWhen X 5 R , P (u ) becomes an unconstrained optimization problem.f 0

The problem P (u ) can be also rewritten as the following unconstrainedf 0

optimization problem,

inf f(F(x, u )) 1 d (x) ,0 Xnx[R

where d is an indicator function of X: d (x) 5 0, if x [ X and d (x) 5 1`, if x [⁄ X.X X X

Furthermore, if f is a convex function and X is a convex set, then the problem
P (u ) is a convex composite optimization problem of which global second-orderf 0

sufficient optimality conditions have been studied in [21].
In particular, if f 5 f , problem P (u ) becomes` f 0

f (x)0]]inf max 0, 2 1, f (x), . . . , f (x) .H J1 mux[X 0

This can be considered as a generalized minimax formulation for solving P. If
f 5 f , then the auxiliary problem P (u ) is given by2 f 0
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m 1 / 22f (x)0 2]]inf max 0, 2 1 1 O [maxh0, f (x)j] .F H JGH Jiux[X 0 i51

The above problem can be further reduced to the following equivalent form (without
the square root),

m2f (x)0 2]]inf max 0, 2 1 1 O [maxh0, f (x)j] .F H JG iux[X 0 i51

Note that the above equivalent formulation of P (u ) yields a differentiablef 0

optimization problem if all the functions f ’s are differentiable.j

It is worth noting that the function defined by

f( y) 5 maxhy , y , . . . , y j ,0 1 m

does not satisfy property (B) and that this nonsmooth function is used in [7] to
formulate another type of the auxiliary parametric optimization problems for
problem P. An alternative approach using a minimax formulation was given in [10].
If the global optimal solution x* is known, the problem P is equivalent to the
following unconstrained optimization problem (see [10])

min maxh f (x) 2 f (x*), f (x), . . . , f (x)j .0 0 1 m
x[X

The following lemma of properties of the auxiliary function F(x, u ) will be often0

used in sequel.

LEMMA 2.1. Let u . 0 and x [ X. Then F(x, u ) > 0. Furthermore if F(x, u ) 5 0,0 0 0

then x [ X .0

Proof. We consider two cases:
Case 1: x is infeasible. Then from property (A) for some 1 < i < m

f (x)0]]f 2 1, f (x), . . . , f (x) > f (x) . 0 . (1)S D1 m iu0

Case 2: x is feasible. Then from property (B)

f (x) f (x)0 0]] ]]f 2 1, f (x), . . . , f (x) 5 max 0, 2 1 > 0 .S D H J1 mu u0 0

Assume that F(x, u ) 5 0. If x is infeasible, then from (1), F(x, u ) . 0, which is a0 0

contradiction. h

3. Global Optimality and Least Root Problem

In this section, a successive solution scheme via parametric monotone composition
formulation is developed for finding a global minimum of optimization problems
that could be nonconvex. More specifically, a two-level iterative scheme will be
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proposed. In the lower level of each iteration, an auxiliary optimization problem
with a fixed parameter is solved, while in the upper level the parameter is adjusted
through finding the least root of the optimal value function of the parametric
optimization problem. It is worth noting that although the global optimal solution for
P is assumed in the following, the algorithm (see Section 4) does not need to know
that as a priori.

DEFINITION 3.1. Let f be a function that satisfies properties (A), (B) and (C) and
u . 0. Define w(u ) to be the global optimal value of P (u ), i.e.,0 0 f 0

w(u ) 5 inf f(F(x, u )) .0 0
x[X

In the following lemmas, let f be a function satisfying (A), (B) and (C). The
following result provides a sufficient and necessary optimality condition for P which
refines the one in [7].

0*LEMMA 3.1. Let x* solve the problem P and u 5 f (x*). Then x solves P if and0 0
0 *only if x solves the problem P (u ).f 0

*Proof. From Assumption (A2), u . 0. It is clear that x* [ X and0 0

f (x*) f (x*)0 0* ]] ]]F(x*, u ) 5 f 2 1, f (x*), . . . , f (x*) 5 max 0, 2 1 5 0 .S D H J0 1 m* *u u0 0

*From Lemma 2.1, F(x, u ) > 0, ;x [ X. Thus the optimal value of the problem0

*P (u ) is 0.f 0
0 0 0* *If x solves P, then from the above, F(x , u ) 5 0, thus x solves P (u ).0 f 0
0If x does not solve P, then there are two cases:

0Case 1. x is infeasible, then from property (A) for some 1 < i < m

0f (x )0 0 0 0]]f 2 1, f (x ), . . . , f (x ) > f (x ) . 0 .S D1 m i*u 0

0 0 *Case 2. x is feasible, then f (x ) . f (x*) 5u . Thus0 0 0

0 0f (x ) f (x )0 00 0]] ]]f 2 1, f (x ), . . . , f (x ) > 2 1 . 0 .S D1 m* *u u0 0

0 *Then x does not solve P (u ). hf 0

LEMMA 3.2. Let x* solve the problem P. If 0 ,u , f (x*), then w(u ) . 0.0 0 0
¯Proof. Let X 5 X\X . Assume that 0 ,u , f (x*). It is clear that0 0 0 0

w(u ) 5 inf f(F(x, u ))0 0
x[X

5 minh inf f(F(x, u )), inf f(F(x, u ))j .0 0¯x[X x[X0 0
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From property (B), it is easy to see that

f (x) f (x*)0 0]] ]]inf f(F(x, u )) 5 inf max 0, 2 1 > 2 1 . 0 . (2)H J0 u ux[X x[X0 0 0 0

¯Let us consider the term inf f(F(x, u )). For any d . 0, the set X can be¯x[X 0 00

decomposed into

.d ,d¯ ¯ ¯X 5 X < X ,0 0 0

.d ,d¯ ¯ ¯ ¯where X 5 hx [ X : '1 < i < m, f (x) . d j and X 5 hx [ X : ;1 < i <0 0 i 0 0

m, f (x) < d j. Theni

inf f(F(x, u )) 5 minh inf f(F(x, u )), inf f(F(x, u ))j .0 0 0
.d ,d¯ ¯ ¯x[X x[X x[X0 0 0

We have from property (A)

.d¯f(F(x, u )) > f (x) . d , ;x [ X and some i(x) .0 i(x) 0

Thus,

inf f(F(x, u )) > d . 0 . (3)0
.d¯x[X 0

f (x*) 2 u0 0]]]Note that f is uniformly continuous and X is connected. For . 0, choose a0 2
,d¯small d . 0 such that for any x [ X , there exists y [ X such that0 0

f (x*) 2u0 0]]]u f (x) 2 f ( y)u < .0 0 2

Then

f (x*) 2u f (x*) 2u f (x*) 1u0 0 0 0 0 0]]] ]]] ]]]f (x) > f ( y) 2 > f (x*) 2 5 .0 0 02 2 2

We further have

f (x) f (x*) 2u0 0 0 ,d¯]] ]]]2 1 > , ;x [ X ,0u 2u0 0

i.e.,

f (x*) 2u0 0]]]inf f(F(x, u )) > . 0 . (4)0
,d 2u¯x[X 01

Summarizing (2), (3), (4), we have that w(u ) . 0. h0

LEMMA 3.3. Let x* solve the problem P. If u > f (x*), then w(u ) 5 0.0 0 0

Proof. Let u > f (x*). If x is feasible, then from property (B),0 0

f (x) f (x)0 0]] ]]f 2 1, f (x), . . . , f (x) 5 max 0, 2 1 > 0 .S D H J1 mu u0 0
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If x is infeasible, then there exists 1 < i < m such that f (x) . 0, and so from propertyi

(A)

f (x)0]]f 2 1, f (x), . . . , f (x) > f (x) . 0 .S D1 m iu0

Thus, F(x, u ) > 0. Note that0

f (x*) f (x*)0 0]] ]]f 2 1, f (x*), . . . , f (x*) 5 max 0, 2 1 5 0 .S D H J1 mu u0 0

Then w(u ) 5 0. h0

LEMMA 3.4. w(u ) is a continuous, nonincreasing and nonnegative function of u0 0

(u . 0).0

Proof. The continuity of w(u ) follows from Theorem 4.2.1 of [2]. The non-0

increasing property of w(u ) is assured by property (C). Lemmas 3.2 and 3.30

together show that w(u ) > 0, ;u . 0. h0 0

The main result of the paper is given below.

THEOREM 3.1. Let f be a function satisfying (A), (B) and (C). u is the global0

optimal value of P if and only if u is the solution of the following least root0

problem

u 5 minhu u w(u ) 5 0j . (5)0

Proof. The result follows from Lemmas 3.2 and 3.3. h

REMARK 3.1. Although it is intuitively straightforward to find the least root of a
nonincreasing function in problem (5), finding the global optimum of the auxiliary
problem P (u ) is, in general, not an easy task, if the objective function of P (u ) isf 0 f 0

not convex. However, the outer function f can have the form of two elementary
convexification transformation functions (exponential and pth power) that were used
in [11] for convexification. The subproblem P (u ) may be then easily solved forf 0

some classes of nonconvex optimization problems.
The proposed method can be considered as a two-level scheme. The lower level is

to solve, for a given parameter, an optimization problem with simple constraints or
without constraint. The upper level is to check if the parameter u is the least root of0

the equation w(u ) 5 0.0

COROLLARY 3.1. u is the global optimal value of P if and only if u is the least0 0

root of the equation

w (u ) 5 0 ,` 0

`where w (u ) is the optimal value of the auxiliary problem P (u ):` 0 f 0
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f (x)i]]inf max 0, 2 1, f (x), . . . , f (x) .H J1 mux[X 0

Proof. The result follows from Theorem 3.1 by letting f( y) 5 f ( y). h`

COROLLARY 3.2. u is the global optimal value of P if and only if u is the least0 0

root of the equation

w̄ (u ) 5 0 , (6)p 0

p¯¯where w (u ) is the optimal value of the subproblem P (u ):p 0 f 0

mpf (x)0 p]]inf max 0, 2 1 1 O [maxh0, f (x)j] . (7)F H JG iux[X 0 i50

Proof. From Theorem 3.1, u 5 f (x*) if and only if u is the least root of the0 0 0

equation

w (u ) 5 0 ,p 0

pwhere w (u ) is the optimal value of the auxiliary problem P (u ):p 0 f 0

mp 1f (x) ]0 p p]]inf max 0, 2 1 1 O [maxh0, f (x)j] .F H JGS Diux[X 0 i50

This is equivalent to that u is the least root of the equation0

1
]
p¯(w (u )) 5 0 ,p 0

p¯¯where w (u ) is the optimal value of the subproblem P (u ). It is clear that thep 0 f 0

above equation is equivalent to (6). h

p p¯REMARK 3.2. (i) It is much easier to solve P (u ) than P (u ) since there is nof 0 f 0
p¯pth root in the objective function of P (u ).f 0

(ii) Assume that x* solves P. It is clear that if for u . f (x*), 0 , p , p , 1`,0 0 1 2
p p1 2¯ ¯the solution x of P (u ) and the solution x of P (u ) are feasible for P, thenp f 0 p f 01 2

¯ ¯w (u ) 5 w (u ). Thus w (u ) 5 w (u ).p 0 p 0 p 0 p 01 2 1 2

4. Algorithm and Illustrative Examples

We now design an algorithm using the two-level scheme proposed in the last section
and a bisection method. We assume that the global optimal value w(u ) for0

subproblem P (u ) is available via some global optimization solver, see e.g. [20].f 0

The parameter e in the following algorithm is the accuracy required in the
application.
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ALGORITHM
Step 0. Given e . 0. Find u and u such that1 2

w(u ) . 0 and w(u ) 5 0 .1 2

u 1 u1 2]]Step 1. Compute w( ) via any global optimization solver.2
u 1 u u 1 u1 2 1 2]] ]]Step 2. If w( ) . 0, let u ← and u 5u .1 2 22 2

u 1 u u 1 u1 2 1 2]] ]]If w( ) 5 0, let u 5u and u ← .1 1 22 2

Step 3. If uu 2u u , e, stop. Otherwise return to Step 1.1 2

Consider the following nonconvex optimization problem in [14]

min f (x) 5 1 2 x x ,0 1 2

subject to f (x) 5 x 1 4x 2 1 < 0 ,1 1 2

x > 0, x > 0 .1 2

The exact optimal solution to the problem is x 5 0.5 and x 5 0.125 and the1 2

corresponding optimal value is 15/16.
The direct application of the primal-dual method [16] would fail in the original

setting of this example problem as its perturbation function is nonconvex [14] and
there is a nonzero duality gap. This example problem was solved in [14] by a pth
power Lagrangian method. In the pth power Lagrangian method [14], the value of p
needs to be chosen sufficiently large in order to convexify the perturbation function.
Although a theoretical lower bound can be derived for p [15, 8], how large is large
enough for p could be a thorny issue in computational implementation.

From Corollary 3.2, this problem is equivalent to the least root problem

u 5 minhu u w (u ) 5 0j0 p

1
]
p¯ ¯where w (u ) 5 (w (u )) and w (u ) is the (global) optimal value of the followingp 0 p 0 p 0

pauxiliary problem P (u ):f 0

p1 2 x x1 2 p]]]min max 0, 2 1 1 [maxh0, x 1 4x 2 1j] .F H JG 1 2ux ,x >01 2 0

pProblem P (u ) is solved using the global optimization solver proposed in [20] inf 0

which the local search is performed using the optimization tool box in Matlab [9].
23Choose e 5 10 , p 5 2, u 5 0.5 and u 5 2, the algorithm is terminated in 111 2

iterations. The optimal value lies in the interval [0.9365, 0.9380] and the approxi-
mate optimal solution is x 5 0.4991 and x 5 0.1253. The result of the algorithm is1 2

plotted in Figure 1.
Let us consider another optimization problem

2min 2 x 1 1 s.t. x < 0
x[X

1
]where X 5 hx [ R : x > 2 j.2
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Figure 1. Least root problem via bisection.

0For this problem, x 5 0 is the optimal solution. The primal-dual method [16],
however, would still fail as a Lagrange multiplier does not exist.

Furthermore, if the augmented Lagrangian method (p. 414, [16]) is applied to this
problem, the dual function for a fixed penalty parameter c . 0 is given by

2 4c(m) 5min (2x 1 1 1 mx 1 cx ) .
x[X

Then the optimal value of the original problem is obtained by solving the following
problem

max c(m) .
m .0

However, it can be checked that there does not exist an optimal solution to this
maximization problem. As a matter of fact, the optimal value of the original
problem is attained only when m → 1`. This is due to the fact that the optimal

0solution x 5 0 of the original problem is not a regular point [16].
Note that the method proposed in this paper does not require the regularity

property. For this example problem, our method results in an auxiliary problem with
p 5 1 as follows:
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2x 1 1 2]]]min max 0, 2 1 1 x ,F H JG
x u0

which can be solved easily as it is an unconstrained convex program. The optimal
0 0solution x 5 0 is attained when u is set to equal to f (x ) 5 1.0 0

5. Local Optimality

Although the global optimality is the main interest of this paper, we next show that
the proposed parametric monotone composition approach is also valid for searching
strict local optimality. This concern is of practical significance, since in many

*situations, only a local optimality of P (u ) can be guaranteed.f 0

0THEOREM 5.1. Consider the problem P. If x is a strict local minimum of P, then
0 0* *x is a strict local minimum of the problem P (u ) with F(x , u ) 5 0, wheref 0 0

0*u 5 f (x ).0 0
0 0*Proof. Assume that x is a strict local minimum of P and u 5 f (x ). It is clear0 0

that

0 0f (x ) f (x )0 00 0 0* ]] ]]F(x , u ) 5 f 2 1, f (x ), . . . , f (x ) 5 max 0, 2 1 5 0 .S D S J0 1 m* *u u0 0

0 0 0There is a neighborhood N (x ) of x such that for any x [ X > N (x ) and x ± x ,1 0 1 0
0 0 *f (x) . f (x ). We will show that for any x [ X > N (x ) and x ± x , F(x, u ) . 0.0 0 1 0 0

0In fact, if a x satisfying x [ X > N (x ) and x ± x is infeasible for P, then from1 0

property (A) the following holds for some 1 < i < m

f (x)0]]f 2 1, f (x), . . . , f (x) > f (x) . 0 .S D1 m i*u 0

0 0If a x satisfying x [ X > N (x ) and x ± x is feasible for P, i.e., x [ X > N (x ) and1 0 0 1
0 *x ± x , then f (x) . f (x ) 5u . Thus from (A)0 0 0 0

f (x) f (x)0 0]] ]]f 2 1, f (x), . . . , f (x) > 2 1 . 0 .S D1 m* *u u0 0

0 *Thus x is a strict local minimum of the problem P (u ). hf 0

0*THEOREM 5.2. Consider the problem P. Let u . 0. If x is a strict local minimum0
0 0* *of the problem P (u ) and F(x , u ) 5 0, then x is a strict local minimum of P.f 0 0

0 *Proof. Since F(x , u ) 5 0, from Lemma 2.1, x is feasible. It is clear that0 0

f (x)00 * ]]F(x , u ) 5 max 0, 2 1 5 0 .H J0 *u 0
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0 0 0*Thus u > f (x ). Assume that there is a neighborhood N (x ) of x such that for any0 0 2
0x [ X > N (x ) and x ± x ,2 0

0* *F(x, u ) . F(x , u ) 5 0 . (8)0 0

Note that

f (x)0 0* ]]F(x, u ) 5 max 0, 2 1 , ;x [ X > N (x ) .H J0 0 2*u 0

By the strict inequality (8),

f (x)0 0 0 0* *]]F(x, u ) 5 2 1 . 0 5 F(x , u ) , ;x [ X > N (x ) , x ± x .0 0 0 2*u 0

Thus

0 0 0*f (x) .u > f (x ) , ;x [ X > N (x ) , x ± x .0 0 0 0 2

Then x is a strict local minimum of the problem P. h0

0 0 0* *The condition F(x , u ) 5 0 holds if x is feasible and u 5 f (x ). The following0 0 0

*result shows that a local minimum of P is actually a global minimum for P (u ).f 0

0THEOREM 5.3. Consider the problem P. If x is a local minimum of P and
0 0 0* * *u 5 f (x ), then x is a global minimum of the problem P (u ) with F(x , u ) 5 0.0 0 f 0 0

0 0*Proof. Assume that x is a local minimum of P and u 5 f (x ). It is clear that0 0

0 0f (x ) f (x )0 00 0 0* ]] ]]F(x , u ) 5 f 2 1, f (x ), . . . , f (x ) 5 max 0, 2 1 5 0 .S D H J0 1 m* *u u0 0

0 *Then from Lemma 2.1, x is a global minimum of the problem P (u ) withf 0
0 *F(x , u ) 5 0. h0

*The following example shows that a local minimum for P (u ) may not be af 0

*local minimum for P if the local minimum of P (u ) is not a strict local minimum.f 0

EXAMPLE 5.1. Consider the optimization problem

inf f (x)0

subject to x [ X ,

where X 5 [0, `) and f (x) 5 cos(x), if 0 < x < 2p and x 2 2p 1 1, if 2p < x. Let0
0u 5 1. Then x 5 2p is a local minimum for P (1):0 f

inf maxh0, f (x) 2 1j ,0

subject to x [ X ,
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0where maxh0, f (x) 2 1j 5 0, if 0 < x < 2p and x 2 2p, if 2p < x. But x 5 2p is0

not a local minimum for the original optimization problem.

6. Conclusions

In this paper, a successive optimization method for solving nonconvex con-
strained optimization problems was investigated via a parametric monotone com-
position reformulation and bisection method. The outer functions in this reformula-
tion are of some forms of elementary convexification transformations, thus the
transformed subproblem may be convex for some classes of nonconvex optimization
problems. The potential advantage of the proposed method is shown by the zero gap
property obtained by the nonlinear Lagrangian function in [14, 22] and the exact
penalty result with smaller penalty parameters than the ones that are required by the
classical penalty function given in [19].
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